Revised GMDH Algorithm Identifying Nonlinear Exponential Type Model

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revised Gmdh-type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network

In this paper, a revised Group Method of Data Handling (GMDH)-type neural network algorithm with a feedback loop identifying sigmoid function neural network is proposed. In this algorithm, the optimum sigmoid function neural network architecture is automatically organized so as to minimize the prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Square...

متن کامل

Neural Network Training Using a GMDH Type Algorithm

Authors have developed a Group Method of Data Handling (GMDH) type algorithm for designing multilayered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equa...

متن کامل

GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms

Group Method of Data Handling (GMDH)-type neural network algorithms are the heuristic self organization method for the modelling of complex systems. GMDH algorithms are utilized for a variety of purposes, examples include identification of physical laws, the extrapolation of physical fields, pattern recognition, clustering, the approximation of multidimensional processes, forecasting without mo...

متن کامل

Consistent nonlinear dynamics: identifying model inadequacy

Empirical modelling often aims for the simplest model consistent with the data. A new technique is presented which quantifies the consistency of the model dynamics as a function of location in state space. As is well-known, traditional statistics of nonlinear models like root-mean-square (RMS) forecast error can prove misleading. Testing consistency is shown to overcome some of the deficiencies...

متن کامل

A GMDH-Based Traffic Flow Forecasting Model

Traffic flow forecasting, the core element of intelligent transportation system, plays an important role in traffic information services and traffic guidance. Since neural network prediction needs plenty of training samples, it cannot guarantee the real-timeness of traffic flow forecasting. In this paper, a GMDH network was constructed by self-organization, and the network was applied to traffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers

سال: 1986

ISSN: 0453-4654

DOI: 10.9746/sicetr1965.22.1283